If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+3y^2-72=180
We move all terms to the left:
y^2+3y^2-72-(180)=0
We add all the numbers together, and all the variables
4y^2-252=0
a = 4; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·4·(-252)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7}}{2*4}=\frac{0-24\sqrt{7}}{8} =-\frac{24\sqrt{7}}{8} =-3\sqrt{7} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7}}{2*4}=\frac{0+24\sqrt{7}}{8} =\frac{24\sqrt{7}}{8} =3\sqrt{7} $
| 74+31+x=180 | | 3/5((7/3(a))-5/2(a))=20a | | 91+45+x=180 | | -5/9b-1=11/9 | | -24=3b | | 1/16x=5/24 | | 0.12t-0.6=-0.08 | | 6x+4x=506 | | f-2/7=6 | | 3/5((7/3(a))-5/2(a))=20 | | 33/4b=21/2 | | Bx6=30 | | 9(x-10)=63 | | -1/2k+10=-10+4/5k | | 3(2x-4)+2(-3+5)=-4x-10 | | 8=-2/6x | | -2|m|=-10 | | 0.4c=-14 | | -18=w-14 | | 50=23+9m | | 6|4x+2|+3=39 | | -2.3x2+9x-63=0 | | 6|4x+2|+3=49 | | m/8+31=36 | | (x=8)/5=3 | | -2(x+6)+10=18 | | 7(r-85)=84 | | 5/8y=1/10 | | (4=3x)/2=5 | | 0=3w | | 2x+4x+9=3(x+3) | | 2(1-x)+6x=-3(x+4) |